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From a theoretical standpoint an essential difficulty one must 

face in the develo~pment of a complete treatment of strong interaction 

physics is the composite nature of hadrons. Thus one is barred from 

directly applying the methods of quantum field theory which work so 

well in QED. However, recent, and by now well known, experimental 

results for electromagnetic and weak inclusive processes’ seem to 

have revived the possibility that elementary fields may play a role 

in hadron physics. To explain this new data the “parton” picture of 

hadrons has been developed. 2,3,4 One treats the hadron as a bound 

system of elementary particles (partons) which are assumed to be 

described by elementary fields and which seem to behave as if they 

were “almost free” in certain kinematic regions. Thus the relatively 

large size and scaling behavior of these semileptonic inclusive cross 

sections can be understood in terms of absorption of the weak currents 

by a structureless spin i/ 2 parton which is never far from the mass 

shell. 

It is, of course, true that this does not yield directly a simple 

theoretical picture. In fact no complete field theory of partons yet 

exists. Moreover, there are some indications that some of the partons 

should be quarks and hence are not to be observed as asymptotic states, 

at least at present energies. There are also alternative explanations 

of the scaling results which avoid the explicit introduction of elementary 

fields. 
5 

However, the possibility of the validity of parton ideas is so 
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appealing, and the present state of theoretical understanding is so 

unclear, that it is extremely important to search for other indications 

of the parton’s existence. 

In the following ‘paper we shall discuss the possibilities of directly 

observing parton-parton scattering effects in purely hadronic reactions. 

Since the appropriate experimental data is appearing at this time it is 

important to have clearly in mind what one can expect to observe as 

the result of the “existence” of partons. 
6 

Particularly we wish to 

clarify what assumptions are necessary to get which results. 7 

The paper will proceed as follows: in Section I we review the 

parton model and its general role in hadron hadron scattering; in 

Section II we discuss contributions to single particle inclusive cross 

sections; Section III discusses the expected structure of doubly inclusive 

processes and the related concept of a two jet cross section; Section IV 

is concerned with the question of multiplicities; Section V involves a 

discussion of what can be expected with respect to quantum numbers 

in simple models where the partons are quarks; in Section VI we 

discuss the questions of elastic and total cross sections; and finally 

in the last section (VII) we shall briefly summarize and present a few 

general concluding remarks. The Appendix reviews how the various 

cross section formulae are obtained. The reader who is not interested 

in detail may proceed directly from Section I to Section VII. 
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I. PARTON-PARTON SCATTERING AND THE PARTON MODEL 

An exciting possibility which arises when one considers the 

role of partons in hadronic reactions is the opportunity to observe 

directly parton-parton interactions, In the semileptonic case one 

measures directly the properties of, for example, electron-single 

parton scattering and only indirectly the properties of parton-parton 

dynamics, i. e . , that they are consistent with scaling at present 

energies. This is also, to some extent true of parton interchange 

descriptions of hadronic reactions when one derives relations between 

hadronic cross sections and electromagnetic form factors. 
8 

We shall 

here concentrate on studying parton-parton scattering directly bearing 

in mind the possibility that the parton concept may be valid but yet 

direct parton-parton scattering may never play a dominant role in 

hadronic reactions. 

The essence of a simple treatment of parton-parton effects in 

hadron-hadron scattering is the assumption that under some kinematic 

conditions two partons from different hadrons and with large rapidity 

4,9,10 
difference can suffer a “hard” scattering process, which is 

effectively both elastic and incoherent. By this we mean that the 

scattering occurs as if independent from the other partons present in 

the originalhadrons andthat the basic process is just two partons go to two 

partons. The final partons subsequently evolve into hadrons but in a 
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fashion which is largely independent of the other partons except for the 

constraint that only hadron quantum numbers be observed in the final 

state. As in deep inelastic lepton induced processes we shall assume 

that it is valid to deal directly with probabilities instead of amplitudes. 

The remaining and presumably dominant part of strong interactions is 

assumed to involve interactions between partons of small rapidity 

difference, i.e., the “wee” partons. 2’4 This is a complicated question 

which we shall not treat here. We shall concentrate on the small 

perturbation due to “hard” collisions of partons which offer some 

possibility of simple description. 

With the above assumptions, the kinematics for “hard” parton- 

parton collisions are simple and many features of the scattering process 

are determined by these assumptions alone. Further assumptions about 

the specific form of the parton-parton scattering cross section will lead 

to more specific predictions. Within this framework the other 

information required in order to calculate cross sections is presumed 

to be obtainable, at least approximately, from lepton-hadron processes. 

This includes the distribution of partons within the hadrons and the 

distribution of hadrons in the decay of the parton. These distributions 

are clearly outside the realm of what is presently calculable from first 

principles. The approximation alluded to above results from the 

possibility of initial and final state interactions present in hadron- 

hadron and not in lepton-hadron scattering which may affect the parton 
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distribution functions. However within the general concept here being 

discussed, where the bulk of strong interactions involve only partons 

which are nearby each other in phase space and interactions involving 

large rapidity gaps are rare, the distributions of the hard partons should 

be unchanged from the lepton case. In fact we are essentially doing 

perturbation theory in hard effects SO that we consider first order 

scattering between zeroth order distributions of the hard partons. 

As has already been pointed out in the literature, 8’9’ lo it seems 

that the best candidate for where the effects mentioned above may be 

present is in the inclusive production of hadrons at large transverse 

momentum. 
ii,12 

This hope is raised by the idea that some sort of 

impulse approximation will justify the above assumptions about isolated 

parton-parton scattering when there is a large transfer of momentum. 

In the ep -e +X case one considered the electron as scattering at a 

large angle off an individual parton. Since, to order (Y, the scattering 

2 
occurs via the exchange of a single large q photon, it is easy to imagine 

that in the limit q2 - m, V- m the scattering occurs in a time short 

compared to the characteristic time of the strong interactions. This 

serves to motivate treating the parton as free momentarily and leads 

to the usual scaling results. For parton-parton scattering the situation 

is much more complicated. If large angle scattering occurs via the 

exchange of a single elementary gluon, either vector or scalar, the 
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impulse approximation is again justifiable. This is in fact the situation 

which is best studied. However one finds, as expected, that to fit the 

magnitude of the observed cross sections the effective gluon-parton 

coupling cy 
eff 

should be of order one. One is now faced with the problem 

of including multiple gluon exchange which is of the same order as 

single exchange for large q2 when Q 
eff = 1. Keeping a few more gluons 

will in fact have little effect on the basic form of the cross section but 

one is somewhat embarrassed about the motivation for the impulse 

approximation; 
13 

In the limit that we eikonalize the isolated parton 

parton cross section with gluon exchange 
14 

unwanted form factors 

appear but by now the assumption of isolated elastic parton-parton 

scattering is certainly unjustified. This last problem of the appearance 

of form factors for the parton is, of course, also present in the’case 

of lepton induced reactions. 
15 

We shall return to this question briefly 

in the last section. 

In summary it is important to keep in mind that at the present 

stage of our understanding of parton models the picture being discussed 

here is somewhat more difficult to motivate than the usual application 

to lepton induced processes which is itself somewhat poorly defined. 

However, the extension to purely hadronic reactions does seem reasonable 

in its general form and the successes in the lepton case make a compari- 

son with the new hadronic data of extreme interest. In what follows we 
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shall simply assume that the impulse approximation and hence the 

picture discussed above is appropriate. 

Before proceeding to the details of the parton model calculations 

we shall briefly preview some of the results so that the reader, if so 

inclined, may proceed directly to the conclusion. We shall see that the 

essential signal for a parton-parton scattering event is a two jet structure 

for the large transverse momentum hadrons in the final state. In the 

C. M. (ISR) we also expect two jets of hadrons along the beam lines 

whereas in the lab system (NALlwe expect one jet along the beam and a 

cloud of hadrons at rest. Henceforth when we refer to two jet structure, 

we mean for the large transverse momentum hadrons. If one observes, 

for example, a jet on one side of the beam but only a poorly defined “fan” 

of particles on the other, the event is at best one parton scattering off 

several other partons and at worst bears no relation to parton effects. 

Secondly, the sort of events of interest here correspond to the two jets 

forming a common plane with the incident beam direction to a very good 

accuracy (* 300 MeV/c). The jets need not, however, be “back to back” 

in the,hadron C. M. system. If there is no indication of such structure 

in the data (the inverse seems true at present), one may simply ignore 

what follows. 

Another result which should be- straightforward to check experi- 

mentally but which involves more specific assumptions is the form of 
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the single particle inclusive cross section. The form 

s -03 
pL/& fixed 

I-l 

results from the assumption of single vector gluon exchange between 

spin it 2 partons. This specific choice reflects current theoretical 

bias plus the twin virtues of simplicity and consistency with the 

assumed impulse approximation. The reader is reminded, 

that it is not a necessary result in the general parton picture, but we 

use it as an illustrative example of typical results expected in parton 

models. 

A simple way to remember the form in Eq. I-l is to note that it 

would also result from assuming that either parton-parton scattering 

or the hadronic process itself should exhibit true scaling behavior. 

Then Eq. I-i follows from dimensional analysis (in the vector gluon 

case masses are ignored and the couplings are dimensionless which 

would also be true for scalar gluons). 

We also find a strong- correlation between the xl=2p,: of-the-fastest 
- 
GT 

particle in one lange!pL jet and the mean multiplicity in the other jet. 

The multiplicity in the same jet is found to be generally much smaller. 

By identifying partons with quarks we find that in pp reactions the ratios 

rr+/<andK+/K 
0 

should be larger than 2 for x 
1 

> .5, whereas p/r and E/K 

should be small. Finally we discuss.the,:possibility of.~a component of otot 

which grows as (In s 12, at least for present energies. 
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The reader who has not been motivated to seek further details 

may now proceed to the conclusion. 
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II. CONTRIBUTIONS TO SINGLE PARTICLE INCLUSIVE REACTIONS 

In order to illustrate how the parton picture introduced above 

can be applied to calculations of hadronic cross sections we will first 

study the familiar example of the single particle inclusive cross 

section. This will suffice to introduce and define all the various 

quantities of interest and even allow a comparison with data. However, 

as we shall see in the following sections the picture is actually most 

naturally suited to the study of two particle (or two jet) inclusive 

cross sections. 

To proceed we define the usual distribution functions. For 

simplicity we assume, for now, the existence of only one variety of 

parton (and one type of gluon) and two types of hadrons, baryons and 

mesons @ions 1. This eliminates various summations which cant be’ 

reinstated in an obvious way as indicated in Section V~. The probability 

that a hadron contains a parton with fraction x of its momentum is 

given by 

P(x)dx = F(x) % II. 1 

wherewe assume that F(x) for spin 1/ 2 partons in the proton can be 

inferred from inelastic e-p data, Note that in principle Eq. II-1 

should contain also a distribution in the transverse direction 

(F dk’, F(x, k;! ). We have, for simplicity, approximated this 
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distribution as a 6 function and done the kt integration. Including 
-6k 

a more realistic but still narrow distribution (e.g. , e 
1 

as suggested 

by n distributions ) would serve only to smear our results slightly. 

Our conclusions would remain essentially the same. 
16 

Our equations 

would, of course, be more complicated but in an obvious fashion. We 

shall maintain this simplification throughout. 

The corresponding distribution for a parton materializing into 

a cloud of hadrons containing one with momentum fraction y is given 

by 

P(y)dy = y dy II- 2 

Note that we have already assumed a dy/y distribution for the soft 

hadrons (if G(0) # 01 as is characteristic of parton models. The 

behavior of G(y) for y approaching 1 is not obvious although in principle 

it can be measured in the process 1p - I + h + X where h is in the so called 

current fragmentation~region. With the idea in mind that G(y) can eventually 

be measured elsewhere and then applied to hadronic reactions, we shall 

make an assumption which leads to a definite form for G(y) which can 

then be tested. We assume that the behavior near “threshold”, y = 1, 

of the probability that a parton is one hard hadron (+ wee hadrons) is 

very similar to the behavior of the probability that the same hadron is 

one hard parton (+ wee partons 1. 
2,4 

We shall in fact make the assump- 

tion that G(y) = F(y) for all non wee y so that, for example, 
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G,(Y) - F,(y) - (I-y)whereas for a baryon (proton) GB(y) - F13(y) - 

!J W,(y). Such an assumption is not unreasonable since we expect the 

same configuration to give the same behavior whether we are projecting 

from partons onto hadrons or hadrons onto partons. This simple relation 

between F and G seems to be born out in specific model calculations. 
17 

With this assumption we have specified the behavior for finite 

y which is of interest for the calculations of cross sections, however 

we have left unresolved the question of the behavior as y + 0 which 

will be important when we discuss multiplicities. 

Note that as a result of the above assumption baryons will be 

damped more rapidily with increasing xl than mesons. This is quite 

different from the results of the first paper in Ref. 12, for example, 

where it is suggested that large pI baryon production may be relatively 

larger, compared to meson production, than at small pI. Heavy meson 

production is presumably not damped here. 

With these distributions one can now define the invariant cross 

section for the process a + b + c + X as depicted in Fig. (i ). Deferring 

the details to the appendix, the result is 

E do 4 
c-T-= 2 

dpc ml 

(s -m, pl/dz, t? fixed) 
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where n =“_1 tan2(f3/2) XI = tplc/&, 

5 1 

0. is the CM angle.of the 

particle c, and do/dt is the invariant differential elastic cross section 

for parton-parton scattering. The appropriate parton variables in terms 

of the hadron variables are s^ = x x 
1 2 

s, 1 = -x1x2sq/(i+q), ?I = -x*x2s/(i +q) 

where the parton masses have been ignored, i. e., s^ +? + % z 0. 

It is useful to recall at this point that.the,simple form:of EqJ II-3 

results directly from our assumptions about the independent, incoherent 

nature of the parton-parton interaction. The general factorization and 

kinematic properties are clearly~,independent of .a specificfomnfor:. 

do-ldi. Of course interesting cross sections result only if do/d: is not 

a rapidly falling function of s’ and 7. Furthermore simple scaling 

laws (E do/d3p - s-” f(pl/&) ) result from simple forms for da/d? 

do --n 
(i.e. x - s f(x1,x2, e 1 not solely from the parton model assumptions, 

Equation II-3 also suggests how to define our impulse approximation. 

We may choose to assume that Eq. II-3 is valid for IL.1 fixed as s -+ a 
S 

although the early onset of scaling at SLAC might suggest validity for 

It ~1 > (to 1 where 1 to 1 is possibly a few GeV. 

In Fig. 2 wu!g~~e~tffa~:fcuun of da/d? for various interesting 

choices of partons and gluons. For comparable distributions (and even 

those favoring gluon-gluon effects) and couplings the largest cross 

section results for spin i/ 2 partons with vector gluon exchange as 

illustrated in Fig. 3. Since we are primarily interested in proton- 

proton processes we take the F distribution for spin I/ 2 partons in 
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protons from data on v W2, i.e., Fp(x) ~3.8 (i-~)~ + 14.9 (i-~)~ - 

17.7 (i-xJ5. We also indicate the result for F=(~-x)~. The G(y) 

was taken proportional to (l-y) as assumed appropriate for the produc- 

40 
tion of a ir; The distribution forms for the gluons are indicated. In 

each case the distributions were normalized so that the hadron’s 

momentum is evenly divided between partons and gluons. Note that 

the assumed relationship between Fp(x) and VW,(X) does not include 

the normalization unless assumptions are made about the partons’ 

charges which are included in Y W (in fact even the x dependence is 
2 

not obvious unless the various partons appear symmetrically). 

Evidently the various results are quite similar except for magnitude. 

As mentioned above, we shall henceforth use the largest for calculations, 

vector exchange on spin I/ 2 partons. Note that we have illustrated 

both the case where the T and ; channel exchanges are added 

incoherently and added coherently. The major effect occurs when 

0 = ~112 and <q> - I ~1:. ,whe= the coherent case is larger by 

approximately a factor i8/ IO. In the calculations that follow we have 

chosen to use the incoherent cross sections although the choice was 

treated as arbitrary. We shall return to this point again in Section V. 

Referring again to Fig. , we point out that, although for the 

present purposes gluon-gluon scattering seems negligible, even with 

fairly generous distributions. we do not wish to rule out the possibility 
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that gluons may play an important role in some region of phase 

Although we shall concentrate on gluon exchange between spin 

iI 2 partons, it is useful to keep in mind two other types of interactions 

which lead to quite different forms for the inclusive cross section. 

First is the inclusion of a four fermi-contact type interaction. 
18 

This leads to do/d? - const. (which would be indistinguishable from 

a heavy gluon theory at finite 7 , Mi >> /‘i 1 >> 1 to 1 ) and do - 

d3F/E 
s”f( ./&). Also one might consider a scalar-scalar event leading 

pi 

to da 

d 3$~,/ E 
- sS4f(jrL/fi) if scalar partons are a predominate constituent. 

In thiscase one:arrives at resa~t8,similal-.to.~the partoninterchange 

picture: 
8 

The most striking feature of Eq. II-3 with single gluon exchange 

is, in fact, the I/s 
2 

behavior at fixed x , = 2p/ +v%,. e. g., with a vector gluon. 
I 

F(xi)F(x2) G ( 
XI (1 frl) 

2xitan9/2 

x ( (i+r1J2 +tj 
2 

f 11r12 + (i+i/t))2) 
This behavior obtains more generally whenever the impulse 

r) 
(i + tl12 

II-4 

.pproximation 

is appre@iate~, and when the theory has dimensionless couplings as in 

scalar or vector gluons on fermion par-tons. In this case do/d; LY 

i/s2 f(Xi. X2’ B ) is guaranteed by dimensional analysis in the limit 

that the masses can be ignored. The existence of this type of behavior 

in the data, although not strictly mandatory to establish the validity of 
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parton models in general, is a clean check of the type of simple 

parton-gluon model we have in mind here. Although the forms mentioned 

in the previous paragraph are interesting, we do not consider them to 

be in the “mainstream” of parton ideas. 

Before proceeding to compare the one gluon exchange formula 

with experiment let us briefly review what it is that we can hope to 

learn. By assumption we have taken F(x) Oc VW,(X) and G ~(i-x). 
Ti 

This fixes everything but the normalization 6 = 
J- 

dx F(x)and & = 
J 

dx G(x) 

which give the total fraction of the proton momentum carried by the 

parton in question and the fraction of the parton momentum carried by 

the hadron studied. As mentioned, these numbers are not directly 

available from lepton induced reactions due to the appearance of parton 

charges. Hence, by comparing the gluon formula with data we obtain 

a value for g2 G a2 
19 

eff * 
Comparison with the recent ~pp - no +X ISR 

data” at 2pI/hj;3-- .2 yields a value F2 6 aZeff = 3 x iOm3. To 

arrive at an estimate of 0~’ eff we take F - i/ 2 (momentum of hadron 

equally divided between spin 1/ 2 partons and gluons ) and 6,” - I/ 6 as 

if all varietie~s of n’s were equally likely and the primary final states 

were divided as (@ +,$K:rm - 2:3:5, as suggested by recent data. 21 

This gives aeff - hi. 072 - .3. This general magnitude for aeff seems 

to be an inescapable result for vector gluon exchange (other exchanges 

give larger values) but the specific value depends clearly on model 

dependent assumptions. 
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In Fig. 4 we see that the general shape of the one gluon cross 

section is in quite reasonable agreement with the data and is at least 

encouraging. 
22 

From the indicated variations of the curves with 0, 

it is clear that a steeper curve results when data is summed over a 

finite solid angle. This will presumably be an important effect when 

one truly attempts to fit the data. The present data, infact, seem to 

require even slightly steeper behavior than is achieveable this way 

indicating a possible need for more sophisticated distribution functions. 

Also shown in Fig. 4 is the type of cross section which we would 

predict for baryon production at large pI. We used GB(y ) = 1, W,(y) 

and took G 
B 

= En0 (the numbers above give E = 615 Gip)* The 
P 

interesting result is that, as expected for our assmnptitins. +he ratiro of r 

production to inelastic bamzyon ;Imduction should increase-as x1++ following 

from a similar behavior for GV(y)/GB(y) as y + 1. We have ignored 

all complications due to decays of the originally produced hadrons, etc. 

Using this specific example as a model it is interesting to calculate 

what parton parameters are probed for various kinematic regions. In 

Figs. 5 and 6 we show the mean values of x (<xi> = <xi> s <x>) and 

Y (Y = Phadron’P parton 
) measured for various values of x 

IC 
at e 2 ~12. 

For the present range of data, xi < . 3, we see that we are looking at 

quite small x partons in the initial state as is expected. We can only 

hope to observe large x partons when we are very near the edge of 
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phase space (x1 c 11. We should be able to probe large y much more 

easily. Note that although <x1> = <x2> = x at B = n/2 as discussed 

above, the dispersion <(x1-x2)‘> is quite large (Fig. 7 ) which will 

be quite important in the next section. Unlike the value of ceff, these 

results for; <jr>,<y> are fairly independent of specific details of the 

preci&:forin of the distributions. 

Although the reader is reminded that a direct test of these 

parton models is the s dependence at fixed x1 one is faced at present 

with only a limited p range. Hence fixed pI behavior is most 
1 

easily checked. If we assume that the pL dependence in the current 

range is - p 
-8; 

1 
at fixed s, we expect do/d3p/E to behave as s 

+2 
for 

gluon exchange and s4 for the contact interaction at fixed pL such that 

ap,/&>. 2,for example. Parton interchange, non parton pictures, 

and scalar parton theories tend to give s 
0 

results, i. e. , approximatic hadronic 

scaling at all pI except very near the kinematic boundary. Hence one 

can hope to distinguish these possibilities in the near future. 

It is important to note that although one uses simple power 

behaviored functions for F(X) and G(y) the resulting convolution in 

Eq. II-3 yields forms for the function f(xl, 0) in Eq. II-4 which are 

in general fairly complicated. Simple power behavior such as the pL-S 

form mentioned above can be approximately true only over a finite 

range in x 
1’ 

so care should be taken, where using such a simple approxi- 

mation. For xl z . 6 the cross section is much more rapidly cut off. 
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For 5 5 ~ 1 the result approaches its asymptotic behavior for small 

xl which for gluon exchange is 

fV. G. cxl,e 1 
1 

- -4 lrl -!- 

xl 
-0 xl xl 

do const 4: 

dp3/E 
V.G. s+m - ln- 

plfixed 
PI 4 

2pl 

II-5a 

II-5b 

Thus the expected discrimination between varies models is feasible only 

for finite x 
1’ 

Further, in the limit s + ~0, p 
1 

fixed, the vector gluon 

model is well behaved except for the presence of the logarithm. This 

is, of course, a serious question in principle. One may interpret this 

result either as an indication that the model is only good for x 
1 

2 const 
2P 

rather than x 2 lmin 
1 dis 

or as an indication that at fixed p l the 

inclusive cross section will asymptotically rise as In 4:. This behavior 

is not unrelated to the result of a rising o tot 
contribution to be found 

in Section VI. 
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III. DOUBLY INCLUSIVE CROSS SECTIONS 

As mentioned in the first section, a truly distinctive feature of 

the present picture of large transverse momentum events is the 

prediction that all such events proceed via the production of two jets 

of hadrons in the transverse direction on opposite sides of the beam 

direction. This is the direct result of the idea that the initial step is 

the large angle scattering of two partons which subsequently evolve into 

jets of hadrons. This general kinematic picture is thus inherent to the 

simple par-ton-parton scattering picture independent of the details of 

do/d:. 

Although the details of how the par-tons evolve into hadrons are 

unclear at present; 
23 

they must be such as to insure the nonobservation 

of isolated partons at current energies. Simple models suggest average 

multiplicities which grow logarithmically with the parton’s momentum 

(as we shall see in the next section) and distributions of hadrons in 

the jet which are well collimated around the original direction with mean 

transverse momentum of order 300 MeV. This insures a uniform 

distribution in momentum space along the original parton direction and 

no isolated partons, at least in momentum space. 

This two jet picture (one on each side of the beam plus some dis- 

tribution along the beam), is to be contrasted with other pictures 8,12 

wherein at least one of the jets is a single hadron and the distribution 
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on the other side of the beam is not clearly jet like. The overall 

multiplicity in these alternative pictures is expected to be lower than 

in the two jet model described here. 
24 

Since data is now becoming available from the ISR on the doubly 

differential cross section where one particle is observed on each side 

of the beam, it is of great interest to study the contribution from the 

present model to the situation where these particles come from the 

two jets. Using the distributions introduced previously and the kinematics 

of Fig. 8 we find (again details are to be found in the Appendix, for 

simplicity we shall no longer explicitly write the implied limit ). 

d60 16 
dx x F(X) F[x tan@ i/ 2)tan(e 2/ 2)] 

Z 
2 2 

Tsx1ix12 
J [cot@ ,I 2)+ ccd(e,/ 2)l” 

, 

III-1 

[cot(e2/2)+ cot(e,/2)]\ X G\G[cot(e2/2)+ cot(ei!2)]\ 

x (g, x 6(PpI-(P2 4-n) 
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These variables are defined analogously to before, i. e., 

xl 
= 2pi/d\js’ the 0’s are in the,hadron C. M. system, (see Fig. 8 ), 

x1 =x, x2= x tan(e1/2)tan(02/2), and i = -x,” s tan@,/ 2 ) / [cot (0 */ 2) 

A 
+cat:(f? 2m/ 2)]. The forms for do/dt in Fig. 2 can again be used where 

now q = tan(e $/.2)eot (B2./ 2)~;; Note thatLthe:,exact correlation in qpr,reanlts from 

the simplifying assumption of zero width transverse distributions. In 

Fig. 9 we indicate typical values for this cross section using the one 

vector gluon exchange cross section as an illustrative example. The 

cross section in this case takes the form 

32 UZff 

32 2 J- 
s xlrl2 

* F(x) F[xtan(e i/ 2)ttan(02/ 2)] 
X3 

III-2 

x G x+ [co&,/ 2)+ uah@,/ 2)]) G{‘s[cotiBi/ 2)+ c~(e2/;)]/ 
I 

x ( 
mot202!2) 2 L’ 

(1 + rlr2 
h2 + t*q i +-,“$ 

The normalizations correspond to those given in the previous section. 

Note especially the important but experimentally unfortunate feature 

that for smallish (,< ~ 5) values of xl1 2, where the cross section is 

relatively sizable, that the correlation between eland 0 2 is fairly weak. 

This results from the large value of &Gi - x2?;mentioned in the 

last section. Although the two jets appear “back to back” in the parton- 

parton C. M. , this system is typically moving in the overall hadron 
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C.M. Hence the distinctive feature of “back to back” jets will not 

appear event by event except for large x 
1 

‘s. It will occur on the average, 

but the angular width of the averaged second jet will be quite large and 

not characteristic of a single jet. Of course good measurements of 

these cross sections will be extremely important in verifying whether 

this parton picture has any validity for hadronic reactions. 

If one, in fact, does observe clean two jet events in the data, so 

as to verify the picture discussed here, one is led to consider measm-.: 

ing the two jet cross section itself. 
25 

Unlike the two hadronic cross 

section, the differential two jet cross section totally specifies the 

kinematics of the parton-parton scattering and so one can study indepen- 

dently the distribution functionsmndthe cross section do/d?. For 

ZP 
example if we take the independent variables to be y = 13et 

1 d-G- 
, the 

common jet transverse momentum, and the angles of the two jets in 

the C. M. system, B 1 and 0 
2 

measured from the same axial direction, 

we find (see Appendix) 

da syl F(xi P(x2) 

dyldQidS22 = z 
sin2tJisin2B 

III-3 

2 

where x 1 = (yl/2) [c0t(e1/2)+co~(e2/2)l, x2 = (yl/211tan(ei/2)+tan[e2/2)], 

2 =x1x2s andF = -(syf/4)[i +tan(e,/2)cot(e2/2)l. 
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Again we can use Fig. 2 with n = tan(e 1/2)cot,(Q2/ $ Thus by varying the 

independent variables s, y I’ 0 i and 9 2 one can study independently 

the dependence on x4, x2’s’, ? and check explicitly the forms of F(x) 

and do/&. Note that one can rewrite Eq. III-3 in terms of the standard 

invariant form (d3pi, Es3p2, E3 as long as the jet energy is well defined. 

This is a nontrivial problem since in any measurement of a jet there 

is an ambiguity about which slow hadrons should be counted as members 

of the jet. This leads to a finite error (say - 4 GeV/c) in both p 
1. 

Jet 
and E. jet : and an error of order E. 

Jet 
* minM2 let which complicates 

the situation but does not detract from its essential interest. 

For E. 
Jet - ‘jet 

we have 

dojet 

(d3pi/=&3p2/E2) 
= $F(xi) F(x2) $ (s’,?) &i;,, +s12) 

For completeness we also give here the 

dqjet2 

d3p/ E 
= Y J dxi 

2xi-yl 00t(e/2) F(x~) 

where the integration is over 

i = (2xitanh/2)- ~~~~~~~~~~~~~ x2 = xitan2(B/ 2)/ n and 

i = -xi.9 y tan(O/ 2)/ 2. Again the forms of Fig. 2 ljet can be applied 

in a direct fashion. 

III-4 

III-5 



-26- 

IV. MULTIPLICITIES 

40-THY 

The question of multiplicities of hadrons in large transverse 

momentum purely hadronic events is very interesting since logarithmic 

multiplicities are essentially built into parton models at step one in 

order to insure that par-tons do not appear as isolated particles as was 

discussed at the beginning of the last section. This is particularly 

important if one wants to identify par-tons with quarks. As was 

mentioned above other models tend to predict quite different multiplicity 

distributions so that multiplicity measurements should prove extremely 

useful in determining how the woz&R actually behaves. 

In’~the present context one can see how logarithmic multiplicities 

arise by considering Eq. 11-2. The G(y) !Gz 
Y 

distribution (y is the fraction 

of the parton’s momentum carried by the hadron) assumed for hadrons 

within a jet yields naturally such behavior if G(O) f 0. The distribution 

does not vanish for small momentum in models with finite momentum 

(“wee”‘as p 
.paBton 

-m)hadrons. (and partons?, although Sueh a zero is not 

uncommon in specific field theory calculations. 
26 

If we consider an event where the scattered parton carries 

momentum defined by y = 

-ip 

lpartons _ 
-1 +JE = 

2 p /dy in the direction 

co& 2) + tan 812 
1 jet 

e (y, = 2( 
xi 

) 
x2 

), we may ask for the average multiplicity 

2pih of hadrons of type h with transverse momentum x =- greater than some 
2P 

minimum value x 
1 min = d-i- 

’ min (where p 
Iv5 

I min defines the range of validity 
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of the present model and may either be a constant or proportional to 

4;). This seems a natural question both experimentally and within the 

context of our parton model. We can evaluate this average multiplicity 

in the limit of small x lmin by using the relation (y = xI/yL) 

y1 dx 
<n (v ,x h I lmin’>jet= I 

-& &x,/r,) 
X 

1 min =i 

IV- 1 

= Gh (0) ln(yl/xl mid+@ti) 

x 
where the second line is valid for 

lmin 
<<I. Thus it obtains for a 

Yl 
fixed p 

lmin 
as s - 03 or for a fixed x 

lmin << Y I’ 
Treating the behavior 

of G as y + 0 as an experimental question we may then define a new 

parameter dh=Gh(0) which characterizes the logarithmic multiplicity 

of hadrons of type h in a jet (note that d h 
will in general also have 

a superscript, d:, to specify that we started with a parton of type 

i). If one assumes that G(y) describes the evolution of a parton 

essentially in isolation from any other partons present (an attitude 

not:. without some theoretical difficulty, see Ref. 23), then one 

expects the constants dh to specify the multiplicities observed in all 

+ - 
parton instigated processes, 

27, 28 
e.g., e e annihilation, ep inelastic 

scattering, and large transverse momentum hadronic processes. On 

the other hand, if the other partons present participate in an essential 

way one can expect only to correlate the general logarithmic behavior 
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(which is presumably related only to the fact that partons don’t become free). 

For the present purpose we shall just treat dh as a parameter and 

proceed to calculate the expected distribution of hadrons. From above 

we have in the limit s + m, y 
1 fixed’ 

<n (x y P. h lmin’ 1 jet - dh ln(yl/xlmin) (ximinfixed) IV-2a 

= dh (ln 
dis 

2P lmin 
+ln y,) (plminfixed) Zb 

= dh In pljet 

’ imin 

(p lmin fixed 1 zc 

where we have not kept the next term which is an unknown constant. 

Note that our choice to discuss the multiplicity of hadrons with 

xl ’ Xlmin (‘1 > ‘lmin 
) is of essential importance in order to obtain the 

simple result of Eq. IV-Z. It has the virtue of having no explicit 0 

dependence and is invariant under z boosts. Hence it is appropriate as 

given both at NAL and the ISR. If one looked at [ p’i > 1; 1 
mm , sin 0 

dependence would appear in an obvious way. Equation IV-Za is valid when 

either x lmin Or ‘lmin 
is held fixed as s - m. To use Eqs. IV-2b and c 

one must require the validity of the present model explicity for fixed p 
lmin’ 

The validity of this assumption is not at all clear. 

It is clear that the most straight forward procedure to test the 

behavior indicated in Eq. IV-2 is to measure both the total momentum of 

a jet and its multiplicity. This will presumably be done eventually but 

for the present we are interested primarily in situations where the 

momentum of only one hadron is measured. (Note that we must 

require at least one high transverse momentum hadron in order to 
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focus on the kind of event for which the present analysis is applicable. ) 

What we need is the value of <n(y )>. 
1 jet 

averaged over those events 

(values of y,) which yield a hadron of momentum x1. Using Eq. IV-2 

we calculate <In y > as a function of x 
1 1 

and 0 (hadron ) which is 

shown in Fig.40. Although it is not generally true that the mean 

multiplicity averaged over some y l distribution should equaL the 

mean:multiplicity,at theiaverage yL it is approximately true.in our case, 

i. e., < Q-u(yl)3 3 = <n(<ylr,)D, (compare Figs. 6 and 10). This 

analysis.applies to events where the parton evolves “freely”. In 

particular we expect it to apply to the hadron jet which appears on the 

opposite side of the beam from the hadron whose momentumis measured. 

Thus we expect, for an observed hadron, with transverse momentum 

xl, the mean multiplicity in the other jet to be 
<n (x 

h lmin’ x P. 1 let opposite - dh <l.n(yi/xim,n)> 
IV-5 

- dh (In -!-- 
Xlmin 

+ln <yI>) 

As an illustration we use the results of Fig. 10 to show a typical 

variation of this correlation effect with d 
h = .8. There is an overall x1 

independent constant which at this level is unknown and which we have 

chosen to allow comparison with the data of Ref. 20 as shown in Fig. fia. 

This constant reflects not only theoretical effects but presumably also 

experimental effects such as angular acceptance. Recall that the jet 

opposite is confined to a smaller and smaller angular region near 90 0 
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as x l approaches 1. This will serve to enhance the observed correlation 

between xI. and <n> 
jet opposite 

in an experiment with fixed angular 

acceptance around 90”. 

The above analysis presumably does not apply to the jet from which 

we selected the hadron with momentum fraction x 
1’ 

To see this note 

that the kinematic structure of such a jet can not, in general, corres- 

pond to the type of event which leads to the multiplicity of Eq. IV-~. 

As an illustrative example consider an average multiperipheral type 

of event (see Fig. i2 ) for a parton with yL. The fastest hadron has 

xl = Wa)yl, the next fastest xI = a(l-a)YT~and so on. .If this is an 

average event then after Cn> - d 
h 

In yl/x 
lmin 

steps we have 

ru -x1 min. This gives that (Y is approximately e -f/dh . 

So for dh of order i, as we expect, the fastest hadron should have 

Xl/Y1 5 . 6. From Fig. 5 we see that this can be satisfied only for 

small x 
1’ 

As we increase xl we expect a configuration where most of 

the parton’s momentum is carried by one hadron and there is little 

momentum left for the other hadrons. In order to have any explicit 

calculations of the multiplicity in the same jet as the observed hadron 

one needs the form of the two particle distribution function 

dxi dx2- 
- --G (xl, 
x1 x2 

x2) which describes the “decay” of a parton into a 

hadron of momentum fraction x 1, one of a fraction x2 and anything. 

We find that for reasonable forms of ??(xi, x2), i.e. , ?? behaving analogously 

to G (e.g. i- e(l-x,-x,)(l-x,)(i-x2) ), the mean multiplicity assumes the 

form (the i accounts for the observed hack-on) 
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<nh(x x ? 
1 jet 

-;ih<h 
y,-1 

imin' 
> +1 

x 
same side 

lmin 
IV-4 

xl Xlmin 
+ <F(1 -- )> 

Yl ’ Yl 

The indicated average is over events with one hadron with momentum 

fraction xI and the function F is generally more slowly varying than 

the logarithm but also vanishes as yL - x1 approches xI min. In 

general one might expect that dh is a totally new constant. However, 

if we require that we Secover Eq. IV-Z for the “average” event when 

xl 
= (i-a)y, z (l-e dh )yl we find that dh = dh as happens in very 

simple models. In explicit calculations we find that for dh - 1 the 

associated, same side, mean multiplicity will increase slightly 

(A<n> < .3)asxi is varied from . 1 to .3. As xI is further increased 

the mean multiplicity will decrease back to one, the observed particle:. 

In Fig. ilb we comparethis behavior to the data of Ref. 20 using the 

example G - (i-x,)(i-x2), ximin=. 05, dh = .8 and allowing an 

additive constant to normalize to the data. Although these details 

are not to be considered rigorous, the general picture of the associated, 

mean multiplicity in the same jet as the observed hadron showning weak 

positive correlation for small x1 and then weak negative correlation for 

larger xI, is expected to be a general feature of the parton model. 

In summary we expect in general to find hadron jets whose multiplicities 

(of hadrons with pL > pI min) vary as the log of the jet momentum, as 

in Eq. IV-2. For events where the large transverse momentum (xl) 

of one hadron is observed, we expect a strong positive correlation with 
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the multiplicity of the other jet as expressed by Eq. IV-3 and Fig. 10 

and Ila. For example in the range . i < xI < .2, for dh = .8, <n> 

should vary by about .4. Naive calculatjons suggest that the mean multi- 

plicity in the same jet as the observed hadron will behave as suggested in 

Eq. IV-4. In the range _ 1 < xi < .2, for dh = ~ 8, it is expected to increase 

by only about ~ 15 and will in fact, decrease as xI becomes greater than 

about . 3 (where almost all the jet momentum is carried by this single 

hadron) as indicated in Fig. lib., Both these features seem in reasonable 

agreement with current experimental results. 
20 

Mores detailed tests should 

provsniost~informative. In all cases the mean multiplicity behaves as 

In 6.ass -. m. for,xIand pirllln fixedif the. miideL!is..valid there; Binally we 

emphasize that the results of this section are generally independent of 

detailed assumptions about z, F(x), or G(y) except that G(y) be finite 

for small y. The type of behavior discussed is inherent in any simple 

parton model 
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V. QUANTUM NUMBERS 

Having discussed the kinematics of parton-parton scattering 

effects, we should like to now discuss what can be said about the quantum 

numbers of the produced large transverse momentum hadrons in the 

parton picture. 
29 The first feature which is characteristic of naive 

parton models is that the hadron spectrum at large pI is predicted to 

be very similar to the hadron spectrum observed in deep inelastic ep 

scattering in the “photon fragmentation” region since both processes 

are pictured as being the result of a parton materializing into hadrons. 

For a more detailed account ‘of what is expected in the leptonic case 

the reader is referred to the literature. 
30 

The only important change 

from the present situation is that in the electromagnetic cases the 

probability that a specific parton participates is weighted by a charge 

squared. In the hadronic case the scattering is assumed to be the same 

for all partons. We remind the reader that the predictions given below 

- 
apply to the limit p,/ds fixed as s + m. 

In order to obtain more specific results, via more specific 

assumptions, we must reinstate the subscripts which we dropped for 

simplicity at the beginning. In particular, for the single particle 

inclusive cross section, a + b - c +x, we make the following replacement 
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FFdrrG+2 
do dcr. 

df 
Fa Fb{+&)G; ++,;,G; 

ij l J 

40-THY 

V-l 

f 6.. 0. 
1J nit GF’ 

The superscripts label hadrons and the subscripts label partons. We 

have included the possibility, as discussed earlier, of interference 

terms in the scattering of identical partons (see Fig. 2 ). In what 

follows we shall continue to assume the predominance of effects due to 

the spin 1/ 2 partons which we shall identify with quarks. It is clear, 

however, that gluon terms can easily be included in the summations of 

Eq. V-i. If the gluons are neutral SU2 singlets, their contributions 

may be easily excluded by studying appropriate differences of various 

charge state reactions. 3i For simplicity in the present discussion we 

shall disregard this possibility. It should be noted, however, that such 

a neutral contribution may be detectable as more complete data becomes 

available. Its general effect should be to reduce the ratios discussed 

below. 

If we identify the partons with quarks we can proceed to make 

predict ions. If we consider the production of n’s, isospin and charge 

conjugation invariance tell US that these are just 3 independent G 

functions 2 
+ - - + 

= Gd” =Q; : G; V-2a 

2b = G,” = $ = G: 
U 
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+ - + - 0 0 

= Gs” = G; = G; : G= = G2 
S S v-2c 

0 0 0 0 
GT 

U 
= G; = Gd” = Gi : +I+ + G* 

U-J 2d 

In order to further simplify the situation and obtain directly simple 

ratios between the production probabilities of various particles, we 

shall make another assumption which can eventually be eliminated by 

more complete data and explicit calculations as discussed shortly. 

Recall (see Fig. 5) that for x1 2 . 3 we are probing on the average 

the behavior of non wee quarks (x > .4) in the initial hadrons. Thus it 

is reasonable to expect that we are observing primarily the valence quarks 

(those which give the quantum numbers of the specific hadron). This 

is consistent with current neutrino data which suggest that few antiquarks 

are present in baryond (qqq) at non wee momentum fraction. 
32 

Hence 

- 
we expect little contribution from the q q sea at finite x compared to the 

valence quark contribution. More explicitly, if we define two distributions, 

V(x) for the valence quarks and C(x) for the q?j sea, we expect the quantity 

C(x) 
E’(X) = V(x)tc(x) 

to be much less than one for x 2 .3, for example. In 

the proton case the usual identification yields Fpu = 2V(x) + C(x), 

Fz = V(x) + C(x), and Fi/ FI = FI/ Fs = FL/ FI = Fi/ FI 2 E(X). 

Thus for an x1 such that e’(<x>) is small we can drop these last 4 

contributions from the sum in V-l. In principle all these ratios are 

experimentally accessible so that when the data is available these 

contributions can be explicitly included. For now we shall assume that 

< C(X )> , averaged over x’s appropriate to x I >. 3, for example, is 
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small in order to obtain simple limiting results. Eventually we will 

do a sample calculation with an assumed form of E(X) in order to see 

how things change. 

For the reaction p + p - T + x we have the form (S + m, x1 = 

2p pr 
- fixecFP 
hjS 

E d” -3 
T d3p 

-3 

uul G,” 

dqud daud dadu Gr, dadu 
+ F;(x+)F;(x2)+- G:, +x Gil +F;(xi)F;(x2)[ r d~x G;I V-3 

d”dd dodd 
+Fpd(xl)Fpd(x2)[r +--?-+o. 

du mt 
dd] Gil +@(<E(x)>). 

(Unless stated the following relations will also be considered to be 

correct to order <r(x)>. ) Assuming an isosinglet exchange for the 

parton scattering process SO that $~UU = x do dd = do ;i~: ud, etc. and taking 

F~(x)=~x)F~(x)=p(~)F~(x) (for example p=2 in the Simple quark model which 

is consistent 66th current data for x near ,5),^-Wie follbving ratios apply 

to the-process p+p+-r+x where the &i:have large transverse momentum 

+ - + - 

<n++TT-> 

G; +Gr’ 

<( 2 
u ){ (p2+p)(g +$+P2uintl +f 

Gd” +G; 

2 ){(P+Ng+~ I+ cJintl’z 

ZCTO> <G~“;(p2+p)(~+~)+~20i,t}+G~o~(P+1’(~+~)t~int” 
V-4a 
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< 7Tf> -= V-4b 
<lT-> 

<G,” {p2+p) ($f+$$+ P20int 

where the bracket <> represents the integrals over x and x2 with 
1 

weight function Fp(xl )Fp(x2) n 
u+7d2 

The result V-4a follows directly 

from Eq. V-2, i.e., isospin and charge conjugation invariance plus the 

assumption that produced n and n’ mesons do not decay into n’s before 

reaching~the detectors. ,If this latter condition is not fulfilled, the q’s 

from the decays of the n and ni should result in a ratio 
<Tr++TT > 

- . 9, 
2<no> 

l.e., 77 ’ production is enhanced by about 10% assuming that the relative 

produntinnof r”, t), q’ is given byU(3). Note that Eq. V-4a did not 

require extra assumptions about the F’s and G’s. The results of 

Refs. 20 and 21 seem in reasonable agreement with this prediction. 

To obtain a value for the ratio n+/n- we need to assume a 

relationship between G{‘(= Gi ) and GI+ C-G,” 1. In light of our earlier 

assumptions that the structure of the G’s is similar tothat of the F’s and 

&l&&r. non wee. & we, see essentially only the val,e@e~e quark.9 in the Fl:s, 

the natural assumption is that the leading hadron in a jet has as one of 

its valence quarks the original scattered quark. Thus with the usual 
f - + - 

valence quark assignments we have GTI = Gi >> GI = Gn , i.e., 
+ + - + u U 

Gd” ‘GU” - G,” /G,” - E(X). Again these ratios are in principle directly 
+ 

measureable in lepton induced reactions. In the limit that we drop Gi 
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and G,” (<E(X)> << 1) we see that Eq. V-4b assumes a very simple 
I 

form (GT = Gi, 
U 

define o z $ +g) 

<lr+> <P{ u(P+1) + P uintb 
-2 
<rT-> <o(p+i) + 0. > 

int 

<J30 + 28 > 

a-24 
int 

<3u +u. > 1 
it 

V-5a 

where in (b) we have used the usual quark.model result <p>?2 In Eq. 

V-5 the integral implied by the brackets includes CT in the weight 

function. Clearly in the absence of interference terms in the cross 

section we have <*+>I <rr >=<P- 2 independent of the specific scattering 

process. Hence the ratio CT+>/ CT-> essentially measures the ratio 

of u quarks to d quarks in the proton at least in the limit < e>~~~d.t. Using 

single vector gluon exchange as an example and keeping the interference 

terms we find that the quantity in the brackets { } in Eq. V-5 has the 

value 1. 2 at B - 90 0 (a-- ~5/4 uint) and falls to 1. i at 9 - 40’ 0 or 

140 ’ (it will eVentUdly go to i at very small angles). Hence even with 

this complication <IT+>/ CT-> essentially measures (3 for all B’s and all 

x Iwher~ the above approximations are valid. Note that unlike the ratio 

<TT+ + r->/ CT’>, Eq. V-5 depends explicitly on assumptions about the 

F’s and G’s. In particular if p = FE/ FI exceeds 2 as x - 1, 
FeP(x) 

as suggested 

by a ratio 
2 

F?(x) 
-. 4 as x -f 1, the ratio CT’>/ <ire> should behave 

accordingly. Again, if the effects of the r) and r) ’ decays are not properly 
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treated, a simple U(3) analysis suggests the above ratio may be as 

much as 30% lower in the data (2.4 - 1.6). 

Turning now to the production of K’s, again ignoring strange quarks 

in the initial state (Fp 
u,d 

>> F? 
S.S 

), we must in general consider 4 

independent production functions 

GK+=GKo = G; - i? 
= G; 

U d 

GK+ =GKo - 
d U 

z Gf i? = Go 
U 

GK- !? 
+ 

U 
= Gd = G; = G;’ 

V-6a 

6b 

6c 

GK- i;p 
d 

= G, = Gf+ = $’ 6d 
ii 

For the various ratios in the process p + p - K +X, where the 

K has large transverse momentum and C. M. angle near 90”, we have, using 

Eq. V-6, 

<K+> -= 
<(dP2+P) + P20int,Gf+ + (u(P+l) + C.&G!+> 

- 
<K-> 

WP2+P) + P2uintE,” + rulp+l) + u )GK > 
mr d 

<K”> WP2+P) + P2uint)G 
K0 
U - : 

+ (u(p+l ) + uint)G;‘> 

<E0> E0 ITo 
+(P2+P) + P2uint)Gu + (o(B~.+f) + uint)da > 

+ 
<~I?> <fu(B2+B1 + ~20intJG;+ 
-z 

+ (u(p+i) + uint)Gf > 

<K”> 
<(u(P2+P) + P2uintE 

K0 K0 
U 

+ (u(P+i) + uint)Gd 

V-7a 

V-7b 

v-7c 
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If we again assume that the leading meson at large pL has the 

scattered quark as a valence quark, we have G 
K+ 

Gi? ii” K+ 
U 

z GF” K- K- 
>>G ,G 

U d ’ 

> Gd , Gd 3 
U 

Again we can assume that all small ratios are 

parametrized by d(x). In this case we find 

<Ix+> <lT+> 
- =- - 2to 2.4 
<K”> <n-> 

V-8 

with all the comments which applied for the pion ratio applying again here. 

In the limit that all the GK except the ones in Eq. V-6a are small, we 

- 
expect K/K - 0, (i. e., E/K -&L%(x)> ). In fact this ratio (Eqs. V-7a, b) 

is a direct measure of the validity of our assumptions that::l) the 

non wee quarks in the initial state (e.g., the proton) are valence quarks, 

2) leading pI hadrons have the scattered quark as a valence quark. Of 

course we are also assuming that we are at sufficiently large pI that the 

entire picture being described here is valid. 

Since at any finite xi and finite s, the experimental value of 

<K-B/ <K+> will be nonzero, it is important to estimate how big the 

ratio can be just from quark sea effects, i.e., from the fact that E(X) is 

actually only expected to vanish as x - 1. Then if <Km>/ <K+> is not 

approaching this value as s is increased at fixed x 1’ we can feel 

fairly certain that our simple quark picture is invalid. In the absence 

of more complete data from lepton induced reactions, we shall assume 

a form for the sea distribution utilizing the functions V(x) and C(x) intro- 

duced earlier (recall F’(x) = 3Vp(x) + 6Cp(x).). AS an illustrative example 

we use the forms suggested in Ref. 10 which satisfactorily describe the 
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ep data. Normalizing 
J- 

F’(x) dx to 1 (we will only look at ratios), we 

have V’(x) - i. 75& (I-x)~ and C’(x) - .35(1-x) 712 
. Taking a similar 

form for Gn - 2VTT + 6Cr’ with (i-~)~ + (1-x) and the overall ratio of V 

and C contributions maintained, we use VT(x) - 1. 17hi;; (1-x) and 

CT(x) - .16(1-x) 
312 

. This leads to the results i.llustrated in Fiq.l3 

which indicate fairly sizable deviations (20 - 30%) in <YT->/ <rrf> from 

itslmzvalue for x1 less than . 6 due to the qi sea contribution. 

Likewise <K->/ <K+> is less than 10% only for x1 very near one. 

Although the specific numbers depend on our choices of V and C, 

presumably the general magnitude is indicative of any reasonable quark 

model which has ‘a backgromrd sea. Larger deviations (as are present 

in low energy data and even at the ISR for pI 5 3 GeV/c ) are expected 

to vanish in the x1 fixed, s - m limit if the present model is valid 

(the limit should be,approadhed from above.). The measurement of 

<K’>/ <K+> is particularily interesting, as mentioned above, but the 

situation is obscuredi at present by the fact that even at, small pi the 

experimental value for the ratio does not match the predictions of simple 

(Pomeranchukon dominated) models, i.e., <K-> = <K+> is not presently 

true for pI ,< 1 GeVlc. 

If we now make the much stronger assumption of SU(3) symmetry 
+ + 

for the G functions we obtain the result that GG = GK and hence 
U 

CT+-> <lr-> 
-- = - = 1. 

<K+> <K”> 
V-9 
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However, SU(3) is badly broken at small transverse momentum and 

within the present picture it is difficult to predict how much and how 

rapidly SU(3) symmetry improves (if at all) as we increase the trans- 

verse momentum. Hence the value of Eq. V-9 as a usable prediction 

is rather limited. At the same time measurements of <K+>/<x’> ‘as 

a function of p 
1 

will have important implications for the dynamics of 

SU(3) breaking, at least within the present framework. 
33 

Returning to Eq. V-3 a similar analysis for pn scattering yields 
+ - 

Tr+Tl 
identical results for the ratios - 

2rr” 
and !?/ K but a value i for n+/ x-= 

K+/K’for 0 t90”. .By the game ~~%?hhads one zsn also analyze the various irk 

interactions. All of these results for the limiting production of mesons 

at large pI for one vector gluon exchange at 0 = 90” are summarized in 

Table I. Deviations such as illustrated in Fig. $3 due to the qq sea are 

expected throughout. 

Finally we recall that our earlier assumptions about the GB(y) for 

the production of baryons behaving like v W2 serves to suppress baryon 

production at large x1 compared to mesons. It should be noted, however, 

that the ratio of protons to pions, for example, in the range . 1 5 x 
1 

5 . 3 

(where some data exists) depends sensitively on the ratio of G’(y)/ G”(y) 

in asimilar; range for y. In the absence of complete knowledge of these 

functions the best statement that can be made is that this ratio for 

hadronic large pi reactions should be similar to what is observed in 
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inelastic ep and e+e- annihilation reactions . For our choice of normali- 

<iT+> 
zations we find - - 

<P’ 
2 to 5 for .I 5 xI 5 .3. Also by similar argu- 

ments to those for K production, the absence-of q’s in the initial 

state (to & ) ) will further suppress the production of antibaryons 

in pp reactions. 

Note that within the context of our incoherent scattering picture 

one would expect little correlation of quantum numbers between the two 

transverse jets. However, if we include the interference terms in the 

scattering of two identical quarks correlations can arise (just as 

CT+>/ <n-> is found to be 2.4 instead of 2). A naive analysis keeping 

only valence effects and ignoring all the complications discussed above 

+ 
suggests that if we observe a leading 71 in one jet near Q = 90° (i. e., 

a u quark was scattered out ), that the ratio of n+ to TI- on the other side 

is enhanced as 

<TT+> Fp o +a. 
(-) 1 <L( y> 
<Tr-> 

TI+ opposite jet 
F”d o 

= Z(1.8) = 3.6 

V-1Oa 

10b 
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We have again taken specific numbers from the vector gluon case for 

4 S90” 5 
u=-u. 

4 mt ’ 
This is to be compared with 2.4 for the 

case of no measurement of the opposite jet. An identical result holds 

for the observation of a K+ in the other jet and the ratio <K+>/ <K”>. 

Hence the inclusion of interference terms in the parton-parton cross 

section (a point which is not totally unambiguous theoretically) can in 

fact lead to strong correlations. This should prove to be an interesting 

experimental question. 

Let us now briefly review our results. This first and overriding 

assumption is that in the limit x 
1 

fixed, s - 0) the parton picture described 

here has some validity. Having accepted this we identified spin 1/ 2 

partons with quarks and assumed that the quarks (as opposed to neutral 

gluons) are the dominant participants from the initial state in large 

transverse momentum events. Within this framework we are then able 

to make statements about the average multiplicities of various species of 

hadrons at fixed xi(we are implicitly assuming that for any given x1 

we are, on the average, looking at the largest pI hadron present, 

which is true.in explicit calculations ). In particular the ratios of 

such multiplicities are relatively independent of the details (do/d: ) of 

parton-parton scattering but depend on the distributions and quantum 

numbers. 

With the assumption of isospin and charge conjugation invariance 

(plus partons with isospin less than or equal to I/ 2 as with quarks) 
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we find 
<rr+frr-> 

- i. 
2<a0> 

Then we identified non wee quarks in the initial 

state with valence quarks and assumed that the most energetic hadron 

in a given jet in the final state has the scattered quark as a valence 

quark. This led to the simple limiting ratios shown in Table ‘I. For 

example CT’>/ <rr-> measures essentially the number of u quarks to 

the number of d quarks in the initial hadrons (if care is taken withy 

events where an n or n’ decays into the observed TT). 

These results are valid within the naive quark model in the .limit 

that the q 4 sea does not contribute. Although the contribution from the 

qS sea is in principle calculable from lepton induced reaction data, we 

are at present only able to estimate this effect as illustrated in Fig. 13. 

If the quark model as described here is valid, the data should approach 

these curves from above as s +m, x1. fixed. The ratio <K->/<K+> 

is particularily sensitive both to the contribution of the q q sea and 

deviations fromthe quark picture. 

We note in passing that contributions from neutral gluons in the 

initial state which scatter to form hadrons will contribute to 

<rr+> <K+> 
- - - - i. We anticipate that this contribution is small but in 
<TF-> <K-> 
any case it can be eliminated by considering, for example the ratio of the 

differences (pp +K++x) - (pn +K++x)and (pp +K- +x) - (pn -K- +x) 

which should be free ofSU(2) singlet gluon effects in the initial states. 

Then we pointed out that the assumption ofSU(3) symmetry leads to 
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<rr+> -<K+>, <ir-> - <K”> etc. The theoretical validity of the 

assumption is an open question but its experimental validity as a 

functionuf pL should bz most informative. Finally we reminded the 

reader that our assumption about the direct relation between F’s and 

G’s (FB - G* - (i-~)~) leads to the suppression, relative to mesons, 

of baryon production at large x 1’ 
although the ratio at small x I depends 

in detail on the functions 
B 

GI (y) and GH(y). Antibaryon production is 

further suppressed in pp reactions by the lack of antiquarks in the 

initial state except in the qS sea. 

In general, for specific charge states in pp + ( ) +X, we expect 

<r+> 2 <K+> > <p> and <rr-> >> <K-> > <,> where <nFf> 2 2&->, 

<K+> >> <K-> and <p> >> <i>. Except for the discussion of 0 and n’ 

+ n’s, we have systematically ignored the complication due to the decay 

of initially produced, higher mass mesons. 
29 

The general effect will 

presumably be to obscure the simple results given here via the production 

of pairs (n+n-, K??) in the decay. A similar effect will result if gluon 

,<Ff> qj> 
scattering @lays a sizable role, particularly for z and - . 

<P’ 

P&ally we note that the,reSuIts^of’thi~‘~ection~ foIlow largely,from 

idark quantum numbers and assumptions. adout the beha&jr bf the F and G 

distribution functions, not parton-Parton dynamics. A more direct test 

of the basic quark-quark scattering picture utilizing quantum,numbers and 

multiplicities, and tainted by a minimum of assumptions, is obtained by 
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checking the relationship between the spectra observed in hadronic 

reactions and those in lepton induced reactions as given by the model. 

The only problem here is the contribution of gluon scattering. 
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VI. CONTRIBUTIONS TO doIdt.1 elasticAND cTOT 

In the proceding sections we have considered the effect in inclusive 

processes of assuming that there exists an interaction between partons 

which does not vanish as the rapidity difference of the two partons 

becomes very large. Further, we assumed that this scattering occured 

essentially in isolation from the other partons whenever the momentum 

exchanged is large enough. By assuming that this process in fact should 

explain the observed brge pL events in inclusive reactions we arrived 

at an estimate of the size of the parton-parton cross section. Since 

we may expect this process to contribute also to the elastic amplitude 

and likewise to the total cross section one must determine that this does 

not yield contradictory results. 

In the elastic case one expects a direct contribution from the hard 

scattering of two partons which then reassociate with the other partons 

to form outgoing protons, for example. In the usual picture this occurs 

with reasonable probability only when the incoming protons each consist 

of one parton with x near 1 and the others near x = 0. 2, 22, 34 This 

picture is essentially identical to the one-which appears in the calculation 

of electromagnetic form factors (we here don’t differentiate between the two 

form factors of the protonjand leads to the Drell-Yan-West 
35 

relationship 

between the electromagnetic form factor of a hadron and the parton 

distribution function F(x) for that hadron. We are thus led to insert the 
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electromagnetic form factor F(t) for the vertex which appears in the 

parton-parton scattering contribution to elastic hadron-hadron scattering 

(See Fig. 14 1. This leads to the following formula for Fig. 14. 

%I 
elastic 

= F4(t) !?$ (T =t) VI-1 

hadron 
from elastic parton 

where as before do/d; is the elastic parton parton cross section and we 

have suppressed the implied summation over the various partons (by 

identifying F(t) with the electromagnetic form factor we have excluded 

contributions from neutral partons, e. g. , gluons 1. This is presumed. 

to be a valid description of the parton-parton contribution whenever 

Itl ’ ltmJ although there is no assurance that this is the dominant 

cmtribution. For the example of elastic proton-proton scattering it is 

assumed that the appropriate form of F(t) is (1 - t/MtF)-2 where 

M.2. - .7 GeV 
2 , 1. e., we chose the normalization F(O) = i. This choice 

v 

is not without some ambiguity although it seems reasonable if we consider 

F(t 1 is measuring the’ probability that the proton “puts itself back 

together” after the hard parton-parton collision, Using this normaliza- 

& tion and the single vector gluon -G with czeff - . 5. we find an elastic 

cross section contribution well below the observed values for large t 

(see Fig. 15 ). We conclude that for exclusive processes parton-parton 

scattering is a small effect and that some process involving a more 

collective interaction of the partons is the dominant feature. Such a 

result is not surprising and we consider that it is not in contradiction 

with our naive picture. 
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We make a short detour here to point out the amusing result that the 

essential behavior of Eq. VI-1 (at least for 0 = 90 ’ ) can be obtained via 

Eq. III-1 and the “correspondence principle” of Bjorken and Kogut. 36 

The essential idea is that exclusive process pp - pp should be related to the 

inclusive process pp - pp + X if we integrate over the region very close 

to the edge of phase space. Here we choose to define “close” in terms 

of the parameter M as generally used in the~derivationof the. DrellyYan -West 
v 

relation. Changing variables in Eq. III-1 from pi, ~2,. 13~’ 02 (Qi=~-f32=O) 

to t, y. z, w, where y =x tan(@,iZ)tan(O2/$ z = $ (cot(ei/2)+ cot 02/Z). 

and w = 
x12 zu (cot e,/2 + cot e,/2) we have:& the limit x, y. z, w all 

approach i, x 
Ii = x12 

= sine 

d3pi d3p2 
- - = t dqidCP2 dt dy dz dw sin’f3. 

E E2 i 

Substituting this into Eq. III-1 we find 

~, 1 

% 1 el = JgJ dx dv dz dw ~(x)F(y)G(c)G(w) $+-ttl 

i-(M&i%) 

Now we take F = G = C(1-x13 for x - 1, and we find, 

VI-2 

VI-3a 

VI-3b 

For large t this is the same behavior as Eq. VI-i. Again the overall 

normalization is ambiguous, essentially for the same reasons as in the 

form factor case, i.e., how are C and Mv chosen? 

As was pointed out by Susskind and collaborators, 
9 

before either 
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effect was observed, it is natural within the parton model to have both 

an “abundance” of large transverse momentum events and a term in 

otot which rises as (In s 1”. The subsequent observation of both effects 

must be considered as at least encouraging for the parton picture. The 

first effect we discussed above. We will point out now how the second 

effect arises within the framework we have developed. The essential 

assumption is that there exists a fixed minimum momentum transfer 

I’min I ’ such y for [i 1 > jtmin 1 our previous analysis is valid. 

In this case 

I 

m1n dl g may have a term independent of s, e.g., for the 

one gluon case -&e2result is 277 azff (A - g ) assuming MV G can 
. . 

be ignored. Since the number of par-tons which can ?articipate, is 

x1x2 
determined by s’ 12 =y s > ItminI 1 i.e., Pparton > 

Jt, 
, 

this number grows with s. For the sort of models discussed here the 

number of eligible partons grows as In s in each hadron (we eventually 

allow wee partons to participate ). Assuming no shielding effects over a 

finite range in s, this leads to a ln2 s contribution to otot. More 

explicitly we have 

1 dxi i 
dX2 I min 

s gdr: Vi-4a 2,v mini i F(xl) 2,t^min,~F(X.2) 

S 
-- 

xls 2 

2ir@2eff 
= -pq- (IJI ,$&-,)” F2UW +&%.n ,-$Q VI-4b 

An equal contribution is obtained by integrating over dq /di? . 
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Clearly iflFminl -xl;nin ; mstead of a constant no interesting effect would 

arise although ourlarge p I analysis would survive for x > x 
1 I‘min’ 

If, as an optimiStic example, wetake ceff-..?, E’(O)-,1 and ltmin 1 -2-aV2, 

we obtain a value for A o tot 
- . 2 In2 s(mb) which,is at ,least suggestive of 

the rise now observed at the ISR 
37 

although therelare clearly uncetiaihties 

of factors of 2 or more in the present analysis. This is not expected to 

be the true asymptotic behavior since shielding will eventually set in. 

In any case more complete experimental studies of both large p, effects 

and a rising yet should help test the parton picture via the suggested 

correlation. As noted earlier similar assumptions yield a single 

6 particle cross section which asymptotically rises as In(-) as fixed pL. 
PI 

Note that only these last results totot - ln2s, E(do/d3p)- In s) 

plus the multiplicity formulae Eq. IV-2b and c, require the assumption 

that the parton-parton scattering model be valid for pie pimin instead 

of just x 
1 

2X 
lmin’ 

Since it is difficult to theoretically decide which 

criterion is appropriate, it will be interesting to see what the data says 

about which predictions are correct. For ,example, if the cross sections 

of Section II are valid at fixed x but the data do not rise as In s at 
1 

fixed pi, the region of validity of the model will be clearly defined. 
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VII. CONCLUSION 

In this final section we shall attempt to review our results and put 

them into perspective. Our basic assumptions are that hadrons have 

a representation in terms of partons, which are treated essentially as 

elementary particles, and that under certain kinematic conditions these 

partons can interact independently and incoherently from the other 

partons present in the initial hadrons. This led directly to simple 

cross section formulae for various hadronic inclusive processes which 

are of interest if the partons have interactions with a long,range in 

rapidity. In particular we attempted to motivate the application of 

parton concepts to large transverse momentum hadronic events by 

analogy with deep inelastic leptonic processes where an impulse 

approximation is presumably valid and the model seems successful. 

This required not only the usual caveats about ignoring standard pertur- 

bation theory results but also an explicit assumption as to the validity 

of the impulse approximation via one gluon exchange, for example. 

The quantities which appear in these cross sections are related to 

measurements made in lepton induced processes, and to the basic 

parton-parton interaction. Thus the exploration of large transverse 

momentum hadronic events may serve not only to confirm (or disprove) 

parton model ideas but also to directly measure parton-parton scattering, 
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The essential features of inelastic, large transverse momentum 

events which are characteristic of simple parton-parton scattering 

models are the two jet, coplanar kinematic structure and the logarithmic 

multiplicities in the jets. 

The general form of the single particle inclusive cross section is, 

ignoring quantum numbers for now (s - a, pl/hj;s, f3 fixed, see Fig. 1) 

E&= 4 
d3p -I” J dxidx2 F(xi)F’(x21 n 2 g (~.f)G$$&l VII-1 

(l+rl) 

where n 
x1 = - tan2 6 / 2, i3 is the C. M. scattering angle, and x 
x2 

1 
= 2p/Jz 

For simple forms of the parton-parton elastic cross section 2 one finds 

E do - - s-n F(xI, e) 

d3p 

S-m VII- 2 
x1, 0 fixed 

The case n = 2 follows either from gluon models with fermion partons 

or from assuming that naive scaling, i. e., dimensional analysis, is 

appropriate. The latter picture has at least the virtue of phenomenolog- 

ical simplicity. Other possibilities include n = 0 for free fermion 

interactions and n = 4 for a purely scalar model. The specific example 

of one vector gluon exchange yields (t and u channel exchange& added 

incoherently) 

E da 
a@:ff dxi dx -.,- - 2 

d3p-s2x; x1’ x22 
VII-3 
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which gives reasonable agreement with current data 
20 

for Qeff - .3. 

.illthough the general shape of the cross section is independent of specific 

assumptions, this particular value of aeff depends on our choice of 

do/d? and normalization of the distributions F and S. 

We also exhibited the 2 hadron and 2 jet cross sections 

hh + hih2 + X (one hadron in each jet) 

16 
FMF(x tan(0 i/ 2)tan:e 2/ 2)) 

2 2 
dxx - 

Tlsx11x12 
ccot(e ,I 2)+ cot@ 2/ 2)J2 

VII-4 

xG 1 
I 
x$ [cot(e,/2)+ cot(e2/ 2),/ G21x$ @ot(Bi/ 2)+ cot(e2/ 2U\ 

xg 6(vp1- v2 + Jr) 

hh - 
da 

let 

d3+ d3p2 
-..- 

El E2 

jetI + jet2 +X. 

-- ’ F(xi)F(x2) g (s^ z’f ) 6 2 ‘sII +?;L2) 
Tr VII- 5 

Y, 
[ cot (e i/ 2)+ cot (e 2/ 2)l , x2 = ‘$ In the last case x1 = 2 . [tan(01/2J+ 

s’ = xi x2 S, andi: =(-S/4kt [ 1 + tan (0 ili/ 

cot (0 ,I 21 . Th us with sufficiently clever experiments one may either 

confirm or dismiss the simple parton scattering picture as applied to 

hadronic reactions. By individually varying xi and x2 one can check if 

the observed F(x)conforms to leptonic results. If the results are 

affirmative one may interpret the s^ and 1 dependence as exhibiting 

the behavior of parton-parton scattering. 
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We discussed at some length the question of the mean multiplicities 

of large transverse momentum hadrons (x1 > x l min) in the jets. 

The characteristic behavior of current naive parton models is a mean 

multiplicity which varies as the logarithm of the total jet momentum. 

However, if we select events by requiring one hadron to have a certain 

xlC’ 
the structure of the jet in which that hadron is observed till in 

general not correspond to that which yields the logarithmic mean 

multiplicity. Thus, although we can infer from the observed x 
1C’ 

the 

average momentum of the parton from which it came (<p > 
1 parton ), the 

mean multiplicity of that jet will not behave as In <p > 
1 parton’ 

In fact 

for increasing xLc > . 4, s fixed, we expect the multiplicity of hadrons, 

xl 
>x I min, to approach one. The other transverse jet should satisfy 

the naive analysis and look very similar to what is observed in the lepton 

induced case. It should be noted that all these results are independent 

of specific details of x du and the distribution function G(y) except that 

G(y) f 0. 

We also looked into the question of what quantum numbers we 

expected for the leading transverse momentum particles. This point 

was approached by identifying partons with quarks. This leads directly 

to the result 
-crrf+lT-, 

2-C:,“> 
s 1 where < > means average multiplicity at some 

finite x1 i. e. , we measure one (presumably leading) in per event and 

average over many events. If we assume that for x1 > ~ 3 we see only 

valence quarks in the initial state and that the leading transverse meson 



-57- 40-THY 

has the scattered quark as a valence quark, we find for pp - meson + X 

< lT+> a+> -=__ = 2 (2.4 if we include interference terms in the scattering 
<TI-> <K”> 
of identical quarks in the vector gluon example) which just measures 

the ratio of u quarks to d quarks in the proton. Under the same conditions 

we have <K>/ <K> << 1 and <g’>/ <B> << 1. SU3 symmetry would give 

<K+> = <or’> etc. We noted how the inclusion of qq sea effects introduce 

xI dependence in the above ratios. We pointed out that the decay of 

higher mass resonances, e. g., n and n ‘, into T’S could tend to obscure 

our results if such events were not properly treated. Other points were 

the correlation between jets due to the enhancement of identical quark 

scattering if interference terms are kept and the suppression of baryons 

at large xi relative to mesons due to our assumption that GB(y) - uW2(y) 

- (2-yJ3 as y - 1. although these results are in general independent of 

details of parton-parton dynamics, they involve some fairly specific 

assumptions about the behavior of the G’s, particularly the last result 

concerning the ratio of baryons produced at large pI compared to mesons. 

A definitive test of the basic quark-quark picture, with a minimum of 

assumptions, will involve a careful test of the predicted relation between 

the quantum number and multiplicity structure of large transverse momentum 

hadron jets and the corresponding distributions measured in lepton induced 

reactions. In this case the only remaining major assumption is the absence 

of gluon scattering contributions. 

In the last section we discussed contributions to 21 elastic and 

otot due to parton-parton scattering effects. In the former case we expect 



-58- 40-THY 

the contribution is negligible although the normalization is not unambiguous. 

In the latter case, the assumptton of a finite fmin where parton-parton 

scattering is important leads to a In 
2 s 

term in otot which could be 

!fm,l 

of the same order of magnitude as the observed rise. Under the similar 

assumptions the single particle cross section at fixed pI will asymptoti- 

4; tally behave as In - x f(e). These last specific results depend on the 

PI 
assymption of a one gluon exchange form for do/d?. 

The general conclusion is that naive parton ideas plus reasonable 

specific assumptions yield some fairly definite predictions for large 

transverse momentum inelastic hadronic processes. These are at 

present in general agreement with data 
20,21 

and the outlook for clean 

tests in the near future at NAL and the ISR are very good. We have then 

a very good chance of soon determining the viability of parton ideas as 

the basis of an understanding of hadron physics. 

We close with a short comment about a possible implication of the 

present work for inelastic leptonic processes. If the elementary gluon- 

parton coupling aeff is of order .5 or less as suggested here, it is not 

impossible that scale breaking factors of the form suggested by naive 
2 @IT 

perturbation theory calculations, 15 i.e, P- ) 
M2 ’ 

could have escaped 

detection at SLAC. Such effects, if present, should however be observable 

at NAL. 
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APPENDIX 

In the following we shall briefly indicate how the various formulae 

in the text can be arrived at from the parton picture. All are understood 

to apply in the limit s + m, xI. and 0 fixed. 

In terms of the distribution functions defined in Section II, we 

have for the general parton-parton contribution to the single particle 

cross section, (see Fig. il. 

da = dxl dX2 
-FF(xi) - 
x1 x2 

F(x2) g (5 .I )& Wy)dy/y A-i 

To arrive at the single particle inclusive cross section we need 

to define f and y in terms of the observed hadron’s momentum. we have 

y = 2 (tanfQl2) + c0t(e/2)~ 

ds II 
2 x1 

which yields 

Then using 

dpid’J = sin d3p/E 

2vl 
A-4 

we have 

do = dxi &2 

d3p/ E 
- F(xi) y- 
xi 2 

X (hi-l j2 

TiPi) 
2 tan 91 

( * +cot Q/2J2 

x2 ‘X 
1 

A-2a 

A-2b 

A-3 

A-5a 
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da 4 =- 

d3p/E rrxlz JJ 
2pl xi 

where x I=zandn=< tan2 e/2. Recall that we have simplified 

our analysis by ignoring the transverse distribution implicit in F and G, 

i. a., took it to be a d function distribution and did the dk”, integral 

trivially. 

The reader may now use his favorite parton cross section to 

calculate the hadronic result. The single vector gluon result follows 

directly from the da 
z given in the Fig 2 T& lWt$ of integration results 

from requiring the arguments of the various distributions to be bounded 
-31 CX 

by one. This yields 2x -cx 5x 5 
2 

i and 1-c - - 
2-q35 

x 5 
1 

1 where 1 

=cot .( 01 P 

1 

. 

For two hadrons in the final state we have (see Fig. i) 

do = F(x21 g & $ G(x) F G(y) -4-6 

Defining x I 
i 

= 2pil/&, x1 = 2~~~/&, 
2 

we arrive at 
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EiE2(d~~~sxL~xL; / 

dxixiF(xi)F(xl tangi/2 tan e2/2) 

iw2 )4! 
tan e1/2 

g Gi~;++~G2&f-+&l~i~i- p2+r) *-’ 

We note for completeness that ? = 
i+r) 

and x2 in Eq. A-6 is 

given by x2 = xi tan(01/+an,(B2i2). The limit of the integration is 

given by 

Finally for the two jet cross section we consider the case where 

no G functions are present and define the cross section in terms of the 

outgoing parton momentum. 

du - 
‘X1 J [X2’ 

F - dxi F x d, L or 
x1 2 

I \ I-- \ 

:?. $&E A-9 

2Pl jet 

Using yL = - ) cos e 
1’ 

cos Q2 (see Fig. 8 ) as the independent 
YS 

variables we have 

syl dyidcos eidcos6’2 A-10 
dxidx2& = xIhZ z 

sin20 sti2e 
dqidq2 “(qi-p2 + *) 

1 2 
This gives 

du syl 
F(xl) F(x2) 

da c- 
dyldQida 

2 
4~ 

\ 
sin’i3 i sin28 

;if fJ(~1-(P2+~I) A-ii 

I I t2 I \ I 
‘II I 

Using yldyI. d cos 0 *d cos 0 2 = 
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sin28 Isin2i? d3pi d3p2 

il slz 2 &Gil +;21)y- - 
1 E2 

A-12 

where we have ignored masses in E, we arrive at 

Wxi)F(x2) $$ 62’;i1 +321) A-13 

Finallyfor the single jet cross section we again start with Eq. 9 

2P 
and use yI - ut XISY 

6 
. Withf =- 2 ‘tanQ/Zandx 

( ) 

the Yl x1 

A-14 

So with r) = (2 tan x, - y,)/yL we have 

da 
-jet= L 
d3p/ E 

v s 2x3-cot e/z)y, F(xl) F(xi 

with integration limits 

A-15 

Again the reader is invited to use his favorite cross section for 

the partons. For completeness we write out the example of vector 

gluon exchange without interference terms as was used for most of 

the calculations. 

One particle: 

do 
8uEff dxi dx 

d3p/ E 
“,zx2 2 /-j+ F(xi I F(x2) G( 

1 x1 x2 
A-16 
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Two particles Cone in each jet 1: 

EfE2(d~p~p2jz :~~~x,i 
J “‘x:l:li::;~~~~~“21~’ 

A-17 
Xll(l + rl) 

x “(y-q-# ++$-$jJ ( (i+ri)2+~2+1/~2+!1~)2) 

. 
x a(PP,-P2 +fl) 

Two jets: 

2cyz 
E,E,(--$@-- = f$ F 7 &Gli +ci2) 

x (n2 +(i.+~7J)2 + i/?-J2 + (i + ;J2) 

A-18 

One j? 
du 

d3p/ E 
= 3j 

x ((i+n)2+n 2 
+i/7J2+(i +;12) 

z -$$-&> rj Fhi) F(xi +j 

A-19 

x ((1 +rl)2+n 2 
+ i/q2 + (1 +p 
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FIGURE CAPTIOKS 

Fig. 1 Pictorial representation of parton-parton scattering 

contribution to the single particle inclusive cross section. 

Fig. 2 Form of d d id? for various single exchanges. 

Fig. 3 Comparison of the relative sizes of contributions to the 

single particle inclusive cross section for various choices 

of partons and exchanged (see Table I). Unless otherwise 

noted, F - VW 2, G - (1-x). 

Fig. 4 One vector gluon exchange form of single particle inclusive 

- - 
cross section with (Y 

eff 
= . 3, F = G = i/ 2 compared to data 

of Ref. 20 for no production (solid line). Baryon production 

is also indicated (dashed line). 

Fig. 5 Average x of scattered parton in the original proton as a 

function of x1 of the observed TI. 0 = 90 ‘. 

Fig. 6 Average fraction y of the scattered parton’s transverse 

momentum carried by the observed TT as a function of the 

xl of the TT, 8 = 90’. 

Fig. 7 Average dispersion ~J(x~-Y~~~! between the momentum 

fractions carried by the two scattering partons as a function 

X of the- observed TT, 0 = 90’. 
I 



Fig. 8 

Fig. 9 

Fig. 10 

Fig. 14 

Fig. 12 

Fig. 13 

Fig. 14 
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Pictorial representation of parton-parton scattering contri- 

bution to the double particle cross section where one is from 

each jet. 

Double particle cross section from one gluon exchange with 

distribution functions described in the text:(a) x1, x2, 8, 

fixed, varying 02; (b) Bi, 0 2, x1 fixed, varying x2. 

2P 
Average value of In yI, where yL = 

lparton 
, as a function 

dis 

of x 
1 

of the observed TT. 

Variation of the expected mean multiplicity of hadrons 

ina jet as a function of x 
1 

of the observed TI. Shown are 

(a) the case for the jet ,opposite’ the observed pi, and (b) 

the jet in which the TT is observed. Data from~Ref. 20 is 

shown for comparison. The constant terms are faed, 

Expected average momentum distribution in typical “multi- 

peripheral” type event. 

Ratios of limiting (S + m , xI, 0 fixed) mean charged multi- 

plicities including the effects of an assumed qq sea contri- 

bution. 

Pictorial representation of parton-parton scattering contri- 

bution to elastic scattering. 
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Fig. 15 Comparison of parton-parton scattering contribution to 

elastic scattering with data. Normalization is defined in 

the text. 
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TABLE I 

Naive Limiting Charged Multiplicity Ratios (s--=, x nonwee, <E > < < 1 ) 

Process 

A _ 

CT i-T > 

2<r”> 

PP 1 

pn 
i 

TP 

ml 

=P i 

+ 
iTn i 

<K+> <TT+> 

<Tr-> <K”> 

2f2.4) 

1 

5C6.6) 

i i 
+- 5 6.6’ 
i I 
i- 2 2.4’ 

2(2.4) 

<KT> 
0 

<K > - - 
<K-> <iTO> 

>>i >>i >>i 

>>I >>I >>1 

>>i 213 3t4.7 1 

2/ 3 >>I 3f4.7 1 

413 >>i 3C3.5) 

>>I 413 3C3.5) 

<K++K’> 

<K-+KO> 

In general the ratios which are not one will be much larger (or 

smaller if < I) if FpiFp :,> 2, for x 
u cl 

- i ). 

The numbers in parentheses indicate the effect of interference terms 

in do/d? , for one vector gluon exchange. 
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